Mechanical vibration (Introduction to vibration)

Faculty of Engineering Mechanical Engineering Department

Dr. Rasha Afify

Objective

- ▪**Classification of vibration** ▪**Basic components of mechanical system** ▪**Mass, spring and damper** ▪**Equivalent springs (Combining**
- **stiffness)**

Mechanical System

Basic mechanical elements

❑**The three basic elements of mechanical systems are:.**

IMass or disc (inertia element) -Spring ▪Viscous Damping element (damper)

Translational mechanical elements

▪**1- Mass Inertia**

▐ **Translational mechanical elements**

2. Spring: is a stiffness component that storing potential energy

Spring force is linear and proportional to linear or angular displacement *x*

$$
k_{eq} = 1/\sum_{i=1}^{n} \left(\frac{1}{k_i}\right)
$$

$$
\left|\frac{k_1}{2}\mathbf{W}\leftarrow\mathbf{W}\left
$$

Springs in parallel I

t

$$
f_{eq} = f_1 + f_2 + f_3 - \cdots (1)
$$

Since, $f t = kx$

Kxeq Xeq = $K_1 X_1 + K_2 X_2 + K_3 X_3$

$$
X_{eq} = X_1 = X_2 = X_3
$$

$$
Keq = K_1 + K_2 + K_3
$$

 $K_{eq} = \sum_{i=1}^{n} Kt$

-Combined Springs (not in series nor in parallel):

$$
n
$$

$$
P.E_{eq} = \sum_{i=1}^{n} P.E_i
$$

$$
i=1
$$

$$
P.E_{eq} = \frac{1}{2}k_1 x_1^2 + \frac{1}{2}k_2 x_2^2
$$

$$
\frac{1}{2}k_{eq} x_{eq}^2 = \frac{1}{2}k_1 x_1^2 + \frac{1}{2}k_2 x_2^2
$$

▪**Combined Springs (not in series nor in parallel):** ▪**If equivalent spring at point (1)**

$$
x_{eq} = x_1
$$

\n
$$
\frac{1}{2}k_{eq} x_{eq}^2 = \frac{1}{2}k_1 x_1^2 + \frac{1}{2}k_2 x_2^2
$$

\n
$$
k_{eq} = k_1 + k_2 \frac{x_2^2}{x_1^2}
$$

\n
$$
x = L \theta
$$

\nHence $x_1 = L_1 \theta$ & $x_2 = L_2$
\n
$$
k_{eq} = k_1 + k_2 \left(\frac{L_2}{L_1}\right)^2
$$

▐

▪**Combined Springs (not in series nor in parallel):** ▪**If equivalent spring at point (1)**

$$
X_{\text{eq}}=X_2
$$

▐

$$
\frac{1}{2} \mathsf{K}_{\text{eq}} X^2_{\text{eq}} = \frac{1}{2} \mathsf{K}_{1} X^2_{-1} = \frac{1}{2} \mathsf{K}_{2} X^2_{-2}
$$

$$
Keq = K1 \frac{X1^2}{X2^2} + K2
$$

$$
Keq = K1 \frac{L1^2}{L2^2} + K2
$$

Another method (Using Newton 2 nd law for rotational system

(Since, link has negligible mass, then $J = 0$ **)**

$$
0 = (k_1 x_1)L_1 + k_2 x_2 L_2
$$
\nThe equivalent spring at the position of spring (1)

\n
$$
J\theta = \sum M_0 \qquad 0 = (k_{eq} x_{eq})L_1
$$
\n(2)

 \bm{A} **t** position (1) $x_{\text{eq}} = x_1$, eq. (1) =eq. (2) $(k_{\text{eq}} x_1)L_1 = (k_1 x_1)L_1 + k_2 x_2 L_2$

▐

$$
Keq = K_1 + K_2(\frac{X_1 l_1}{X_2 L_2}) = K_1 + K_2(\frac{l_1}{L_2})^2
$$

▪**The equivalent spring at the position of spring (2)**

 $0 = (keq \; xeq \;)L2$

▐

At position (2) $X \cdot \mathbf{q} = \mathbf{X} \cdot \mathbf{Z}$

$$
(k_{\text{eq}} x_2)L_2 = (k_1 x_1)L_1 + k_2 x_2 L_2
$$

$$
X_1 = L_1 \Theta, \ X_2 = L_2 \Theta
$$

$$
K_{eq}
$$
 = = K1 $(\frac{X1 l1}{X2L2})$ + K₂= K₁ $(\frac{l1}{L2})^2$ + K2

Dampers in series : $y_{eq} = y_1 + y_2 + y_3$

Since, $f(t) = cy^{\circ}$

$$
\frac{f}{Ceq} = \frac{f}{C1} + \frac{f}{C2} + \frac{f}{C3}
$$

is constant

$$
\frac{1}{Ceq} = \frac{1}{C1} + \frac{1}{C2} + \frac{1}{C3}
$$

$$
Ceq = \sum_{i=1}^{n} \frac{1}{Ci}
$$

▪**Dampers in parallel :**

$$
f_{eq}=f_1+f_2+f_3
$$
(1)

Since
$$
f(t) = C
$$
 y'

$$
y_{eq} = y_1 + y_2 + y_3
$$
-----(2)

Since $\sqrt{eq} = y_1 = \sqrt{2} = y_3$

Hence $C_{eq} = C_1 + C_2 + C_3$

$$
Ceq = \sum_{i=1}^{n} Ci
$$

▪**If equivalent damper at point (1)**

$$
\frac{1}{2}C_{eq}y^2 \text{ eq} = \frac{1}{2}C_1y^2 + \frac{1}{2}C_1y^2
$$

$$
y_{eq} = y_1 \qquad \text{then } y_{eq} = y_1
$$

$$
C_{\text{eq}} = C_1 + C_2 \frac{y \, 2^2}{y \, 1^2}
$$

$$
y_1 = I_1 \Theta
$$
, then $y_{eq} = I_1 \Theta$

$$
\dot{y_1} = l \dot{\theta_1}, \text{ and } \dot{y_2} = l \dot{\theta_2}
$$

$$
C_{\text{eq}} = C_1 + C_2 \frac{l2^2}{l1^2}
$$

▪**Combined damper (not in series nor in parallel):**

▪**If equivalent damper at point (2)**

$$
y_{eq} = y_2 \text{ then } y_{eq} = y_2
$$

$$
y_{eq} = y_2 \text{ then } y_{eq} = y_2
$$

$$
\frac{1}{2}C_{eq}y^2 = \frac{1}{2}c_1y_1^2 + \frac{1}{2}c_2y_2^2
$$

$$
C_{\text{eq}} = C_1 \left(\frac{y_1}{y_2}\right)^2 + C_2 = C_1 \left(\frac{l_1}{l_2}\right)^2 + C_2
$$

E Another method (UsingNewton 2nd law for rotational **system)**

 (1)

 $J\Theta$ ^{$\cdot\cdot$} = \sum Mo

(Link has negligible mass, then $I=0$)

The equivalent damper at the point (1)

$$
0=(\boldsymbol{c}_1\boldsymbol{y}_1)L_1+\boldsymbol{c}_2\boldsymbol{y}_2L_2
$$

At position (1) $y_{eq} = y1$

 $C_{eq} = C_1 + C_2 \frac{l2^2}{l_1^2}$

$$
J \theta = \sum M \qquad 0 = (c \ y 1)_{eq} L 1 \qquad (2)
$$

 $l1²$

$$
c_{\text{eq}}\mathbf{y}_1\mathbf{eq} L_1 = (c_1\mathbf{y}_1)L_1 + c_2\mathbf{y}_2L_2
$$

$$
\begin{array}{c|c}\n & c_2 y_2 \\
\hline\n & l_1 \\
M_0\n\end{array}
$$

 (2)

 (1)

▪**Another method**

(UsingNewton2ndlawforrotationalsystem)

 $J\Theta$ ^{$\cdot\cdot$} = \sum Mo

(Link has negligible mass, then $I=0$)

The equivalent damper at the point (2)

$$
0=(\boldsymbol{c}_1\ \boldsymbol{y}_1)L_1+\boldsymbol{c}_2\ \boldsymbol{y}_2L_2
$$

At position (1) $y_{eq} = y1$

$$
J \theta = \sum M \qquad 0 = (c_{\text{eq}} y_2 \, \text{eq}) \, L \, \text{and}
$$

$$
c_{\text{eq}}\mathbf{y}_2\mathbf{eq}\mathbf{L}_2 = (c_1\mathbf{y}_1)L_1 + c_2\mathbf{y}_2L_2
$$

$$
C_{\text{eq}} = C_1 \left(\frac{y_1}{y_2}\right)^2 + C_2 = C_1 \left(\frac{l_1}{l_2}\right)^2 + C_2
$$

